建立時間:03.31.2025 by NLight41
返回 NLight41 本站
創建者:NLight41
構思起始:mid-2024
實作啟動:03.09.2025
HLOA(Holo Loop Optimization Algorithm)是一個源於物理「全像原理」的最佳化結構構想,由我在高中階段自發性構思與開發。
下方為我以英文撰寫的命名說明,供讀者參考與理解這套演算法的邏輯與精神。
是一種原創的最佳化演算法架構,靈感來自全像原理與動態系統的自我調整機制。
其核心設計融合了:
HLOA 旨在針對複雜問題求得更具穩定性與收斂性的解,適用於多種最佳化應用場景。
H = HoloFactor * |誤差變化量|
過大: 可能導致計算成本過高、收斂速度變慢、記憶體使用增加。
過小: 可能使最佳化運算不足,無法充分探索解空間。
延伸: 如何動態調整或根據目標函數特性自適應決定最佳迭代次數,甚至引入如自動學習率或後向反饋機制。
HLOA 的命名來自我對「資訊結構動態回饋」與「全像原理」的長期觀察與興趣。
這是一套由我在 2024 年中開始構思,2025 年初進入實作的原創性演算法架構。
希望能透過這個命名傳達我對最佳化不只是數學模型,更是動態系統與內部回饋機制的理解。
The name HLOA (Holo Loop Optimization Algorithm) comes from the core idea of simulating an optimization process inspired by holographic feedback loops.
Rather than following a conventional path of gradient descent alone, HLOA introduces a dynamic structure that mimics how systems can self-correct, adapt, and resonate internally through feedback.The term “Holo Loop” emphasizes the cyclical, reflective nature of learning—where every update carries memory, momentum, and self-awareness, similar to holographic interference patterns in physics.
This naming concept was originally conceived by me (NLight41) in mid-2024, and I began implementation and experimentation in early 2025.
As a high school student passionate about optimization theory and computational logic, I wanted to design an algorithm that pushes beyond traditional methods by blending mathematical reasoning with structural design thinking.HLOA is not only a technical framework but also a reflection of how I perceive adaptive intelligence: recursive, nonlinear, and ever-evolving.