NLIGHT41_HLOA

NLight41_HLOA 專案子倉庫

建立時間:03.31.2025 by NLight41
返回 NLight41 本站


HLOA - Holo Loop Optimization Algorithm

創建者:NLight41
構思起始:mid-2024
實作啟動:03.09.2025


演算法簡介

HLOA(Holo Loop Optimization Algorithm)是一個源於物理「全像原理」的最佳化結構構想,由我在高中階段自發性構思與開發。
下方為我以英文撰寫的命名說明,供讀者參考與理解這套演算法的邏輯與精神。

HLOA(Holo Loop Optimization Algorithm)

是一種原創的最佳化演算法架構,靈感來自全像原理與動態系統的自我調整機制。

其核心設計融合了:

HLOA 旨在針對複雜問題求得更具穩定性與收斂性的解,適用於多種最佳化應用場景。


HLOA 核心創新 與 設計理念

1. 動量加速(Momentum Boost)

2. 全像回饋(Holographic Feedback)

3. 自適應全像回饋因子


[HLOA v0.1.1] - 03.24.2025

版本內容:

🔹技術更新:

🔹平台遷移挑戰:

🔹整體創新亮點:


[HLOA v0.0.0_AdaptiveTest] - 03.21.2025

版本內容:

🔹新增功能:

🔹模組化改善:


[HLOA v0.0.0] - 03.20.2025

版本內容:

🔹主要技術:

🔹創新思路:

🔹待探討問題:


🧾 命名理念與開發背景(Naming Philosophy and Background)

中文引言:

HLOA 的命名來自我對「資訊結構動態回饋」與「全像原理」的長期觀察與興趣。
這是一套由我在 2024 年中開始構思,2025 年初進入實作的原創性演算法架構。
希望能透過這個命名傳達我對最佳化不只是數學模型,更是動態系統與內部回饋機制的理解。

英文部分:

The name HLOA (Holo Loop Optimization Algorithm) comes from the core idea of simulating an optimization process inspired by holographic feedback loops.
Rather than following a conventional path of gradient descent alone, HLOA introduces a dynamic structure that mimics how systems can self-correct, adapt, and resonate internally through feedback.

The term “Holo Loop” emphasizes the cyclical, reflective nature of learning—where every update carries memory, momentum, and self-awareness, similar to holographic interference patterns in physics.

This naming concept was originally conceived by me (NLight41) in mid-2024, and I began implementation and experimentation in early 2025.
As a high school student passionate about optimization theory and computational logic, I wanted to design an algorithm that pushes beyond traditional methods by blending mathematical reasoning with structural design thinking.

HLOA is not only a technical framework but also a reflection of how I perceive adaptive intelligence: recursive, nonlinear, and ever-evolving.